

Innovation and Manufacturing Brokerage Event

6 November 2019, Santiago de Compostela

Jürgen Tiedje

DG Research and Innovation

European Commission

Unit Sustainable Industry Systems

Research and Innovation

NMBP in Horizon 2020

Industrial Leadership

Leadership in enabling and industrial technologies

Access to Risk Finance

Innovation in SMEs

Indicative budget: 75 billion € *

Indicative Budget: 16.5 billion € *

Out of it for NMBP: 3.8 billion € *

* July 2015 – includes EIT, JRC, "Science with and for Society",
"Spreading Excellence / Widening Participation", in addition to three
priorities above

Research and Innovation

Leadership in enabling and industrial technologies

ICT

NMBP

SPACE

- Nano- and Microelectronics
- Photonics

- Nanotechnologies
- Advanced Materials
- Biotechnology
- AdvancedManufacturing &Processing

NMBP 2018-2020

Priorities

Calls

Impacts

FOUNDATIONS for tomorrow's industry (~ EUR 433M)

Eco-system for design/testing/ups caling

TRANSFORMING

European industry (~ EUR 561M)

Global industrial leadership for re-industrialisation

Industrial

SUSTAINABILITY

(~ EUR 690M)
incl. Next-Gen. Batteries,
Low-carbon, Circuladustries

Energy/
Resource efficiency
Low emissions

Recap: Technology Readiness Levels

- TRL Target: from 3-4 up to 7 with a centre of gravity on 5-6
- Highest TRLs for cases with a strong industrial commitment

 Beyond TRL 7: explore paths to commercial exploitation, to deploy technologies funded under Horizon 2020

Overview of NMBP topics related to Factories of the Future

Four topics in the call "Transforming European industry

- •DT-FOF-07-2020
- •DT-FOF-09-2020
- •DT-FOF-10-2020
- •DT-FOF-11-2020

FOF-07-2020 – Assembly of micro parts

- Investments in R&D of new micro-manufacturing techniques are necessary to maintain European manufacturing advantage
- Manufacturing technologies used for larger parts cannot be directly applied to micro part assembly because of physical phenomena.
- European industry has technology to produce & assemble micro-scale objects (total volume < 1 mm3 & dimensions between 10μm and 300μm)
- Further efforts needed to combine accuracy, speed, productivity, efficiency and reliability
- New production lines must be able to detect & adapt with minimum human involvement to variations in the environment or the components
- **Models of micro systems assembly processes** are needed that take these effects into account

FOF-07-2020 – Assembly of micro parts

RIA 100%

TRL 4-6

Scope:

Focus: **new assembly technologies** (e.g. additive manufacturing) especially for products that contain micro-parts and which are assembled manually because of technical limitations

Proposals to cover **min. 3 of the following areas**:

- Design for micro-assembly & micro-disassembly including procedures, standardisation & performance
- **High throughput systems for micro-handling & assembly** (including robust strategies to grasp & release parts)
- In-line monitoring & quality assessment for parts & assembly
- Closed-loop error compensation & optimisation models & algorithms adaptable to specific working conditions
- Advanced control methods and/or human-in-the-loop strategies

Proposals to include pilots where industrial end-users will validate demonstrated processes. Proposed solutions to respect environment & workers, economically viable & easily transferable to other sectors or product types.

EUR 8-10 million

Open: 27 June 2019 *Close*: 5 Feb 2020

FOF-07-2020 – Assembly of micro parts

Expected impact:

The developed manufacturing process should deliver all of the following:

- A decrease of production time by at least 15%
- A measurable increase of automation levels, especially the self-adaptation to changes, e.g. machine learning
- A higher or similar precision level
- A reduction of at least 20% in rejection rates during the production process

Relevant indicators and metrics, with baseline values, should be clearly stated in the proposal.

FOF-09-2020 – Energy-efficient manufacturing system management

- Improving industrial energy efficiency requires the integration of energy data (historical data, real-time data and real-time predicted energy cost) into complex production management systems.
- The challenge is **to combine energy efficiency technologies** into a holistic, intelligent and interoperable approach to **ensure comprehensive implementation** that provides significant energy savings.

FOF-09-2020 – Energy-efficient manufacturing system management

IA 70%

TRL 5-7

Scope:

Near real-time intelligent, transparent management of production systems can improve traditional LCA/LCCA approaches towards more ambitious energy saving.

Proposals are expected to address all of the following:

- Application of ICT (e.g. digital twins, big data, IoT, cloud technologies & AI) allowing a shift from diagnosis to prognosis of energy consumption & cost in manufacturing
- Info collection & compilation linking the **environmental footprint** of each equipment/component to the complete factory/plant & entire value chains
- Demonstration of design approaches & technologies, through min. 2 complex **industrial case studies**, with application focus across manufacturing sectors
- Certification/standardisation of proposed solutions with focus on compatibility of energy/environmental data across manufacturing sectors

EUR 8-10 million

Open: 27 June 2019 **Close**: 5 Feb 2020

FOF-09-2020 – Energy-efficient manufacturing system management

Expected impact:

- Energy consumption reduction for improved production processes at least 25%
- Life Cycle Cost reduction of at least 15%
- Improved environmental performance of the involved products
- Development of standardised European energy-efficient best practices to overcome the barriers limiting their application in the manufacturing sectors

Relevant indicators and metrics, with baseline values, should be clearly stated in the proposal

FOF-10-2020 – Pilot lines for large-part high-precision manufacturing

- Production of large-scale parts displays a low level of mechanisation
 & automation because of the need for non-standard machines & design procedures
- Repair of large parts is difficult, causing problems in quality & repeatability
- A more automated production & in-situ repair is needed for large innovative & multi-functional products
- Recent research in the large-scale parts production has delivered highquality demonstrators
- Full-scale, **reconfigurable, modular and flexible pilot lines**, are needed to accommodate processing, e.g. for thermal treatment, control & characterisation

FOF-10-2020 – Pilot lines for large-part high-precision manufacturing

IA 50%

TRL 5-7

Scope:

Proposals to **cover min. 3 of the following** & **to demonstrate** them in relevant industrial environments:

- **Upgrading manufacturing equipment** using several innovative steps for high precision manufacturing in an integrated & modular process
- Implement design, modelling & simulation tools to support the selection of processing parameters
- **New methods & instruments** for process characterisation & in-line control of large-scale parts (for quality & high precision, e.g. non-destructive testing)
- Work-holding devices reducing repositioning of components, as well as new methods for equipment calibration & in-process fast recalibration

Provide open access to pilot lines for training purposes

EUR 12-15 million

Open: 27 June 2019 **Close**: 5 Feb 2020

FOF-10-2020 – Pilot lines for large-part high-precision manufacturing

Expected impact:

The developed manufacturing process should deliver **all** of the following:

- **Reduction of production cost** by at least 15% through process integration, flexibility of the production cells, improved quality and reduction of assembly costs
- Reduction of production time by at least 20% by a significant automation increase
- A higher or similar precision level
- **Reduction of the scrap** generated by the process by at least 20%
- Reduction of the environmental impact and of safety hazards

Relevant indicators & metrics, with baseline values, should be clearly stated in the proposal

FOF-11-2020 – Quality control in smart manufacturing

- Smart factories are characterised by processes involving interlinked work pieces & associated tools as well as logistics operations
- They generate large amounts of data, which can be used for analysis and prediction as well as to optimise the quality of manufacturing operations and manufactured products
- A major challenge for manufacturing is the reliability of data

FOF-11-2020 – Quality control in smart manufacturing

IA 70% *TRL* 5-7

Scope:

Measurement traceability should ensure optimal manufacturing quality. Suitable modelling & simulation approaches & data fusion techniques are needed to interpret & use sensor/actuator data in a factory.

Proposals to address min. 3 of the following aspects:

- Integrate intelligent, cognitive, adaptive & cost-effective instruments & systems of sensors/actuators for process monitoring & control (e.g. virtual sensors and digital twins) into existing production or pilot lines
- Showcase real-time data validation within an actual production line & incorporate data integrity strategies based on, e.g., distributed ledger (blockchain) technology
- Demonstrate how distributed, time stamped & persistent solutions for automated collection, storage, analysis & use of production data can lead to an integrated approach to zero-defect manufacturing
- Develop **strategies for rapid line qualification & reconfiguration** based on large pre-existing data sets & related open protocols

Certification, regulatory & standardisation activities related to the proposed solutions should be included in the proposal.

Research and Institute of the proposed solutions should be included.

EUR 8-10 million

Open: 27 June 2019 *Close*: 5 Feb 2020

FOF-11-2020 – Quality control in smart manufacturing

Expected impact:

- Increased equipment productivity through rapid error localisation (10%)
- Reduction of ramp-up time (> 15 %) using smart sensors/actuators & existing production data sets
- AI-driven instrumentation stimulating the **transformation towards smart & fast processes** leading to decreased time-to-market (time reduction >10%)
- Significant increase in quality of manufactured products leading to a reduction of scrap of at least 50%

Relevant indicators & metrics, with baseline values, should be stated clearly in the proposal

Thank you!

For more information please refer to National Contact Points:

https://

<u>ec.europa.eu/info/funding-tenders/opportunities/</u> <u>portal/screen/support/ncp</u>

